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• Urban built and natural environments
have multiple interrelated features.

• Unsupervised deep learning applied to
satellite images identified distinct envi-
ronmental clusters.

• Some clusters had dominant features like
water, vegetation, and dense building
and population.

• Other clusters had multiple features like
buildings surrounded by vegetation.

• Our method can track urban change and
support sustainable urban development.
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Cities in the developing world are expanding rapidly, and undergoing changes to their roads, buildings, vegetation,
and other land use characteristics. Timely data are needed to ensure that urban change enhances health, wellbeing
and sustainability. We present and evaluate a novel unsupervised deep clustering method to classify and characterise
the complex and multidimensional built and natural environments of cities into interpretable clusters using high-
resolution satellite images. We applied our approach to a high-resolution (0.3 m/pixel) satellite image of Accra,
Ghana, one of the fastest growing cities in sub-Saharan Africa, and contextualised the results with demographic and
environmental data that were not used for clustering. We show that clusters obtained solely from images capture dis-
tinct interpretable phenotypes of the urban natural (vegetation and water) and built (building count, size, density, and
Campus, Imperial College London, 86 Wood Ln, London W12 0BZ, London, UK.

5 May 2023; Accepted 8 June 2023

vier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2023.164794&domain=pdf
http://dx.doi.org/10.1016/j.scitotenv.2023.164794
mailto:majid.ezzati@imperial.ac.uk
http://dx.doi.org/10.1016/j.scitotenv.2023.164794
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv


A.B. Metzler et al. Science of the Total Environment 893 (2023) 164794
orientation; length and arrangement of roads) environment, and population, either as a unique defining charac-
teristic (e.g., bodies of water or dense vegetation) or in combination (e.g., buildings surrounded by vegetation or
sparsely populated areas intermixed with roads). Clusters that were based on a single defining characteristic
were robust to the spatial scale of analysis and the choice of cluster number, whereas those based on a combina-
tion of characteristics changed based on scale and number of clusters. The results demonstrate that satellite data
and unsupervised deep learning provide a cost-effective, interpretable and scalable approach for real-time track-
ing of sustainable urban development, especially where traditional environmental and demographic data are
limited and infrequent.
1. Introduction

More than 55% of the world's population currently lives in cities and
the percentage is projected to increase, particularly in the developing
world (United Nations, 2019). The manner in which cities grow and
change has major, local and global, environmental, health and
wellbeing implications (Ezzati et al., 2018; Keirstead and Leach, 2008;
Ramaswami et al., 2016). Timely information on the urban built and
natural environment is needed to guide and evaluate policies for sus-
tainable and healthy urban development. Yet, data on different features
and dimensions of cities' environment – including vegetation, roads,
buildings, and population settlements – are scarce and infrequent in
the developing world and, when available, have varying spatial and
temporal coverage and resolutions. As a result, studies of urban environ-
ments are largely focused on individual features, such as the urban ex-
tent (Angel et al., 2016; Liu et al., 2019), land use and landcover
(Addae and Oppelt, 2019; Alemohammad and Booth, 2020;
Boguszewski et al., 2022; Huang et al., 2018; Karra et al., 2021) includ-
ing green and blue spaces (Huang et al., 2021; Mathieu et al., 2007),
roads and connectivity (Brewer et al., 2021; Cadamuro et al., 2018;
Das and Chand, 2021), and population density (Tiecke et al., 2017), in
isolation. These features are, however, often interrelated and exhibit
complex patterns, at various scales, in terms of arrangements of differ-
ent forms of vegetation, buildings of various sizes, and street networks.
For example, many cities in developing countries contain high-density
informal settlements that are scattered across the city, and which have
a large number of small buildings, narrow unpaved roads, and low levels
of vegetation. Outside the city centre, buildings may be larger and
free standing, surrounded by some vegetation and connected by paved
as well as unpaved roads, while on the periphery there may be
farmlands and woodlands alongside emerging residential areas
(Lall et al., 2017).

Advances in machine learning and computer vision allow automated
large-scale analysis of cities from images, as detailed in Section 2. These
techniques, if applied to very high-resolution satellite images, enable study-
ing the complexity of the urban environment at different scales, from
submeter to entire neighbourhoods (Ibrahim et al., 2020; Ma et al.,
2019). Among these, unsupervised algorithms have the potential to identify
patterns in images that go beyond predefined criteria and labels, and hence
untangle the complex multidimensional heterogeneities of cities' environ-
ment (Wang and Biljecki, 2022).We hypothesise that using solely the visual
information captured by satellite images can provide practical information
about spatial arrangement of the built and natural environment in a spa-
tially consistent and coherent manner. The captured phenotypes can in-
form, and track the impacts of, urban planning and policy choices. To
investigate this potential, in this paper we used unsupervised deep learning
together with very high-resolution satellite images to identify interpretable
phenotypes of the urban environment. We tested our approach in Accra,
the capital of Ghana, one of the fastest growing cities in the developing
world and tested the sensitivity of the results to key methodological
choices. We also explored the intermediate outcomes of the deep learn-
ing method to understand if the neural network learns meaningful
image representations and tested the interpretability of the resultant
clusters with demographic and environmental data that were not used
for clustering.
2

2. Data, methodological context and contributions

Remote sensing images, typically captured by satellites, are a valuable
source of information for planning and making policy decisions about cit-
ies. Satellite images contain information at various spatial scales, ranging
from features of the built and natural environment, such as buildings and
trees, at the meter and increasingly submeter scale to surface and land
use variation over hundreds of meters, and a combination thereof (Esch
et al., 2010). Some urban features studied with satellite images include
roads and buildings (Brewer et al., 2021; Cadamuro et al., 2018; Das and
Chand, 2021; Tiecke et al., 2017), the spatial extent of cities (Angel et al.,
2016; Liu et al., 2019), and land use and cover (Addae and Oppelt, 2019;
Alemohammad and Booth, 2020; Boguszewski et al., 2022; Huang et al.,
2018; Karra et al., 2021). Traditionally, this information was derived
through approaches such as spectral indices (Varade et al., 2019) and pat-
tern and texture extraction methods (Li et al., 2014). These methods have
been increasingly complemented with deep learning techniques such as
convolutional neural networks (CNN) that allow classification without ex-
plicit prior selection of low-level features (Li et al., 2018; Ma et al., 2019).
Such supervised analyses require labelled data that represent ground-
truth on one ormultiple outcomes, such as buildings or roads. It is therefore
difficult to use supervised methods for detecting complex combinations of
urban characteristics because pre-defining features, their mutual relation-
ships, and accessing labelled data for multi-dimensional outcomes is chal-
lenging.

Satellite images have also been used in an agnostic unsupervised ap-
proach that identifies patterns in images based on all visible features and
without predetermined labels. Themajority of unsupervised analyses of sat-
ellite images have been conducted at pixel-level, where pixels are grouped
together based on their colour, intensity or measures such as Normalised
Difference Vegetation Index (NDVI; an indicator of vegetation in a satellite
image based on spectral absorption of light; range:−1.0 to 1.0) for land use
or cover classification (Borra et al., 2019; Li et al., 2014), using a range of
algorithms including k-means (Han et al., 2004) and its variant Iterative
Self-Organising Data Analysis (ISODATA) (Dhodhi et al., 1999), or fuzzy
approaches where the pixels can be assigned to multiple clusters (Lim and
Lee, 1990). Pixel-level analysis, however, might miss complex and
context-related features of the urban environment which involve informa-
tion at larger or multiple scales, such as the difference between inner-city
greenery and vegetation contiguous to city boundaries. These distinctions
are essential for urban policies and infrastructure whose impact goes be-
yond the area covered by a pixel (Ibrahim et al., 2020). Furthermore, as
the spatial resolution of satellite sensors increases (<1m/pixel), the seman-
tic meaning of an individual pixel diminishes (Zou et al., 2015) since pixels
cover distances smaller than most features of interest. Rather, in very high-
resolution images groups of pixels collectively contain information about
features of the urban environment. These features can be as small as cars
(Tayara et al., 2018) and patches of greenery or water, and with increasing
number of pixels capture more complex features such as rooftop materials
(Wu and Biljecki, 2021), gardens (Mathieu et al., 2007), arrangement of
buildings (Abascal et al., 2022), and road quality (Brewer et al., 2021;
Cadamuro et al., 2018) and connectivity (Das and Chand, 2021). The alter-
native to pixel-level analysis is patch-level analysis, where a CNN can simul-
taneously learn features of different levels of abstractions (Hu et al., 2015)
and cluster assignments (Caron et al., 2018; Xie et al., 2016) for complex
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scenes at relevant scales for urban form, e.g., 30–100m (Huang et al., 2018;
Li et al., 2018; Ma et al., 2019). This approach is analogous to fields such as
population biology (Wilson, 1985) and genomics (Ashley, 2016), which
commonly use data-driven methods to categorise study subjects in ways
that single traits, or their pre-specified combinations, cannot.

Our study presents an unsupervised deep learning method that includes
combined feature extraction and clustering. We apply the framework to satel-
lite images of a city in the developingworldwhere urban change has been het-
erogeneous and data are scarce (Boeing et al., 2022; Burke et al., 2021; Zhu
et al., 2019). To test our overall hypothesis, we interpret the clusters against
external features from various data sources on built and natural environment
andpopulation, visually and through application of a post-hoc supervised clas-
sifier, and show that the clusters capture distinct features of the environment.

3. Study area

We applied and tested our unsupervised clustering approach in Accra,
Ghana. Accra is one of the fastest growing cities in the developing world,
with diverse environmental characteristics. We also had data on the built
environment, water, vegetation, and population which could help with in-
terpreting the results of our image-based analysis.

The Greater Accra Metropolitan Area (GAMA) is the administrative,
economic and political capital of Ghana, with a population of~5million in-
habitants (Ghana Statistical Service, 2019) and an area of ~1500 km2. For-
eign investment, and trade in natural resources such as oil and minerals,
have made it a leading hub for trade, technology and education in Africa.
GAMA includes the Accra Metropolitan Area (AMA) at the coast, the adja-
cent metropolis of Tema to the east and further suburban municipalities
in the northeast and northwest. The population of GAMA increased by al-
most 90% from 2000 to 2021 (Ghana Statistical Service, 2019). Economic
and population growth has led to the development of luxury housing paral-
lel to the expansion of informal settlements and slums, the latter of which
are affected by poor housing and sanitation (Annim et al., 2012; Songsore
and McGranahan, 1998; Weeks et al., 2007; Zhou et al., 2011). These
Fig. 1. Overview of data management, analysis, and interpretation. In the pre-processi
within the Greater Accra Metropolitan Area (GAMA) or contained clouds were remov
neural network (CNN) which is described in Methods. The resultant clusters were de
water, and vegetation. After clustering, we fitted a classifier to predict cluster member
formation, measured by their corresponding SHAP values. To understand how the
dimensional feature space.
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variations and inequalities occur both within and between
neighbourhoods. For example, Nima, a large slum located in the centre of
AMA, is situated near the wealthy neighbourhood of Cantonments in the
east, while livelihoods also vary between the inhabitants in Nima (Owusu
et al., 2008). Other large informal settlements are located close to the wet-
lands at the coastal south-western part of the AMA (Weeks et al., 2007). As
a result of expansion and land use changes, Accra's natural environments
such as forest, grassland and wetland have decreased (Akubia et al.,
2020). Like other cities in the developing world, urban sprawl and increase
in the number of vehicles have led to an expansion of road infrastructure in
GAMA (Amoah and Korle, 2020; Arroyo-Arroyo, 2021). However the ex-
pansion has been uneven with most of the major paved roads in AMA,
and many unpaved connecting roads elsewhere (Arroyo-Arroyo, 2021).

4. Data and methods

We applied an unsupervised clusteringmethod to a very high resolution
satellite image of the city of Accra in Ghana, and interpreted the results
with external data of the built and natural environment. The overall analy-
sis plan, including data pre-processing and analysis, is shown in Fig. 1. The
image and environmental data are described in Section 4.1, and the cluster-
ing method in Section 4.2, including how we used intermediate outcomes
of the clustering method to evaluate the relationships among the resulting
clusters. Section 4.3 describes the methods for fitting a classifier to predict
cluster membership and subsequent SHAP analysis to quantify which envi-
ronmental and demographic characteristics define the clusters. Addition-
ally, we tested the sensitivity of the clustering to key methodological
choices, as described in Section 4.4.

4.1. Data

4.1.1. Satellite image
We used a very high-resolution (0.3 m per pixel) satellite image with

three different bands (RGB). The satellite image covered 87% of GAMA in
ng step, the city-wide satellite image was cropped into tiles. Tiles, which were not
ed. The image tiles were then fed into the end-to-end DeepCluster convolutional
scribed and analysed with external data on buildings, roads, population density,
ship to understand which environmental variables were most important for cluster
model learns the image representations, we analysed the clusters in the low-
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the year 2019, missing some parts in the northwest of the region. The satel-
lite raster data were released as part of the Maxar Open Data initiative
(Maxar, 2020) in response to the COVID-19 pandemic in GeoTIFF format.
The commercial pre-processing of the image included colour-balancing
and orthorectification.

We first cut the satellite image into 256× 256 pixel tiles, equivalent to
about 75 m × 75 m on the ground. This tile size can contain multiple fea-
tures of urban form, e.g., houses and roads, such that it captures objects
with their urban context and surroundings. As part of a sensitivity analysis,
we evaluated the influence of three different tile sizes: 128× 128 (i.e. 50%
smaller than main analysis in side length), 384 × 384 (50% larger), and
512 × 512 (100% larger) pixels. We only used tiles that were within the
GAMA boundary in the analysis (Fig. 1). Additionally, tiles that contained
clouds were removed from the dataset. We identified clouds by calculating
the median tile colour and filtered out tiles that appeared mostly white (all
RGB values >210). The 85.4 GB citywide satellite image was divided into
321,820 256 × 256 pixel tiles with 222,420 tiles remaining after data
cleaning.

4.1.2. Built environment, water, vegetation, and population
We used four different datasets on urban characteristics in Accra to in-

terpret the image-based clusters. The datasets are described in Table 1
andmapped in GAMA in the Appendix Fig. A.1. To calculate the per tile sta-
tistics, we intersected each vector and raster dataset with the index grid of
the satellite image tiles.

4.2. DeepCluster: combined feature extraction and clustering

We used DeepCluster (Caron et al., 2018), an end-to-end feature extrac-
tion and clustering framework to assign each image tile to a cluster. In the
method, a CNN is used as a feature extractor to reduce the high dimensional
image to a lower dimensional feature vector. The CNN extracts visual fea-
tures hierarchically, with features such as lines and edges in early layers
and domain-specific features such as rooftops and trees in latter layers of
the network, ultimately generating a representation that summarises each
image tile into 4096 numerical features. The extracted features are reduced
from 4096 to 256 with use of principal component analysis and normalised
using the Euclidean norm.A k-means clustering algorithm is then applied to
these features in the last layer of the CNN. The clustering algorithm assigns
a cluster membership to each image representation which is then used as a
pseudo-label to update the weights of the CNN classifier. The algorithm
Table 1
Sources of data on built and natural environment and population in Accra.

Environmental or demographic variable Unit

Building area m2

Building count Integer
Average building size m2

Average building orientation Degrees (°)
Length of major roads m
Length of all roads m
Minimum distance to major roads m
Minimum distance to all roads m
Population density Estimated total number of people per grid-c
Mean NDVI Index (−1 to +1)

a https://ui.adsabs.harvard.edu/abs/2019AGUFMIN11D0688H/abstract. The buildin
represents the tile size and location. For each measure, we calculated the mean value pe
2019) as deviation of orientation from cardinal directions; it was defined as an orientati
entation is measured with respect to cardinal directions, and is a visual feature of the bu
satellite image together with the building shapes (coloured by building orientation) and
orientation. Building orientation also has a physical relevance for residents, impacting t

b https://www.openstreetmap.org/. The road information is provided in a vector form
calculated statistics per tile.

c https://www.worldpop.org/geodata/summary?id=6116.Weused a population rast
computed by vectorising the population density raster file, overlaying it with the tile gr

d https://www.usgs.gov/centers/eros/science/usgs-eros-archive-landsat-archives-lan
a cloudless day, to calculate the mean NDVI value for each tile.
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iteratively minimises clustering and classification loss, creating new
pseudo-labels after each training epoch, i.e. every time the whole dataset
has passed through the CNN and the weights of the network are updated.
The method combines feature extraction and clustering in an end-to-end
approach, meaning the cluster formation relies entirely on the image data
without any use of external label data or user-guided input.

We used the CNN architecture VGG-16 (Simonyan and Zisserman,
2015) that has been pre-trained on the ImageNet dataset for feature extrac-
tion. CNNs that have been trained on millions of images such as the
ImageNet dataset are commonly used to make use of previously learned
low- and mid-level features which are similar across tasks, even if the
ImageNet images are different from those used in the final analysis, hence
improving and speeding up the learning process (Donahue et al., 2014;
Oquab et al., 2014; Yosinski et al., 2014). This approach has been shown
to be advantageous to training from scratch especially in scenarios where
the target task does not rely on labelled samples (Yosinski et al., 2014).
Most hyperparameters (i.e., settings for the configuration of the training
process) were kept at the same values as in the original DeepCluster
paper, except for the number of clusters (which is discussed in
Section 4.4.1), learning rate and the number of epochs, which were set to
0.0001 and 20 respectively based on an initial set of experiments. The algo-
rithm formed themost intuitive and interpretable clusters at a learning rate
of 0.0001, compared to a set of alternative learning rates (0.1, 0.01, 0.001,
0.00001 and 0.000001). Learning rates >0.0001 picked up structure in the
city-wide satellite image that resulted from how the city-wide image was
stitched together (frommultiple satellite images) as part of the commercial
pre-processing and was unrelated to the content of the image. The training
time for around 20 epochs is about 24 h, and training for another 24 h (~50
epochs) did not substantially change the clusters and their interpretation.

Many cities in the developing world, including Accra, have fragmented
spatial structures with pockets of slums neighbouring high-rise business
buildings and scattered fringe developments (Musah et al., 2020). To
avoid smoothing over heterogeneities that can result in missing the full
complexity of an urban system, we analysed the tiles independent of their
proximity to other image tiles, i.e. the tiles fed into the neural network con-
tain no information about neighbouring tiles or geographic information,
e.g., latitude and longitude.

4.2.1. Visualising the clusters in the feature space
To understand to what extent DeepCluster learns the intermediate

image representations that distinguish clusters, we inspected the cluster
Data type Year Source

Vector 2019 Maxar and Ecopia.aia

Vector 2019 Maxar and Ecopia.aia

Vector 2019 Maxar and Ecopia.aia

Vector 2019 Maxar and Ecopia.aia

Vector 2019 OpenStreetMapb

Vector 2019 OpenStreetMapb

Vector 2019 OpenStreetMapb

Vector 2019 OpenStreetMapb

ell Raster (~100 m/pixel) 2019 WorldPopc

Raster (~30 m/pixel) 01-01-2020 Landsatd

g information is provided in a vector format. We overlaid the vector with a grid that
r tile. Building orientation was computed with the momepy package (Fleischmann,
on of the longest axis of the bounding rectangle in range 0–45 degrees. Building ori-
ilt environment. An example is shown in Fig. 4, in which we plotted a section of the
assignment to two clusters that are similar in most characteristics, except building
he natural lighting and ventilation.
at. We overlaid the vector with a grid that represents the tile size and location, and

erwith a resolution of 100m to calculate themean population density per tile. It was
id and calculating the mean per tile.
dsat-8-oli-operational-land-imager-and. We use Landsat imagery from 01/01/2020,

https://ui.adsabs.harvard.edu/abs/2019AGUFMIN11D0688H/abstract
https://www.openstreetmap.org/
https://www.worldpop.org/geodata/summary?id=6116
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-landsat-archives-landsat-8-oli-operational-land-imager-and
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membership in the lower-dimensional feature space. For this purpose, we
obtained the 256 principal components of the image representations ex-
tracted by the second last fully connected layer of the CNN. These 256 princi-
pal components together accounted for 99.5% of the variance of the 4096
extracted featureswhich the CNNuses to represent each image.Wemeasured
the degree of uniformity of tiles in the feature space that fall within each clus-
ter with the average distance to the cluster centroid (intra-cluster distance).
We show the visualisations and results of the feature space in Section 5.2.

4.3. Built and natural environment and demographic characteristics and predic-
tors of clusters

We used the data on built environment, water, vegetation, and popula-
tion to quantify the characteristics of the clusters thatwere formed based on
image data alone. We report the median values of each measure for all the
tiles that fall in each cluster. Additionally, we used the machine learning
classifier XGBoost (Chen and Guestrin, 2016) to quantify which environ-
mental and demographic characteristics, individually and collectively,
characterise the image-based clusters. This decision-tree-based method
identifies which environmental and demographic variables predict cluster
membership. It has the practical advantage of being able to accommodate
missing values (Friedman, 2001), such as for tiles that have no buildings
and therefore no average building size and orientation. To measure which
environmental and demographic variables are important for predicting
image tiles' membership to different clusters, we used the fitted classifier
to generate SHapley Additive exPlanations (SHAP) (Lundberg and Lee,
2017) values. The SHAP values are summary measures of the importance
of each environmental and demographic variable for each cluster as well
as across all clusters, in an additive manner.

We split the dataset (tiles) into 80% training and 20% testing data. We
used a stratified approach for splitting the tiles to ensure that all clusters
were equally present in the evaluation. The gradient boosting classifier,
XGBoost, was fine-tuned with a 5-fold cross-validation method with classi-
fication accuracy as a score. We used the Hyperopt (Bergstra et al., 2013)
library, which uses Bayesian optimisation for parameter tuning to find the
optimal hyperparameters. The final accuracy of the classifier was 0.66,
scoring 54% higher than random assignment of a given image tile to a clus-
ter. This classification accuracy score, which is only moderate, reflects that
the environmental and demographic variables that were used in the SHAP
analysis are only a subset of those that have visual signals. Other visual sig-
nals, on whichwe did not have geocoded data, may include vehicles, build-
ing type and material, specific vegetation categories, and types of terrain
(Lillesand et al., 2015).

4.4. Sensitivity analysis

4.4.1. Sensitivity to scale and number of clusters
We analysed the robustness of the clusters to scale of analysis (i.e. tile

size) and the choice of number of clusters.
First, we investigated how spatial scale of analysis impacted the cluster

formation. While the main analysis uses tiles sized 256 × 256 pixels, we
tested a set of tiles that were smaller (128 × 128, 50% less than the main
analysis) and larger in side-length (384 × 384, 50% more and
512 × 512, 100% more) than the main analysis to examine how cluster
membership and characteristics changed. We report the robustness of the
clusters to scale in Results (Section 5.4.1).

In the main analysis, we present eight clusters of urban environment,
each with its own phenotypic characteristics. This number was chosen
based on visual inspection of results, and an initial set of experiments
where we sought to achieve a balance between the separation of clusters
and the level of detail required for an intuitive classification of the urban
environment. To further understand how the choice of cluster number in-
fluences the separation of the city into clusters and the character of the re-
sultant clusters, we modified the number of clusters, K, in the DeepCluster
analysis and report how the clusters change from K = 2 to K = 12 in
Results (Section 5.4.2).
5

4.4.2. Influence of hyperparameter k on feature learning
DeepCluster iteratively groups the image representations deep in the

network with a standard clustering algorithm, k-means, and uses the subse-
quent assignments as supervision or pseudo-labels to update the weights of
the network as part of a classification task. The choice of the
hyperparameter k in the k-means clustering part of the algorithm is distinct
from the final number of clusters (K) in the data; rather, k influences how
the algorithm learns distinctive image representations. It may be the case
that a large hyperparameter k is better suited for feature learning (Caron
et al., 2018; Fabel et al., 2021) even if for interpretation we prefer a smaller
number of clusters. To examine the role of the number of clusters in the k-
means algorithm on learning image representations, we carried out the
analysis as a two-step approach: in the first step, the CNN is used to create
deep image representations (features) with specific values of k, and subse-
quent step of clustering into K clusters. To investigate whether a larger k
helps to learn more discerning features, we created a set of different deep
features (DF) with the three choices of k (k ∈ {8, 50, 100}), namely DFk8,
DFk50, and DFk100. We then clustered the intermediate DF with a k-means
(K = 8) (i.e. as in the main analysis) to compare the cluster memberships,
as reported in Section 5.4.3. Based on our stability analysis, we chose to
continue the analysis with k = 8, such that the last epoch cluster assign-
ments directly mapped to final cluster labels.

5. Results

5.1. Clusters of the urban environment

In the main analysis, we divided GAMA into eight clusters and named
each cluster as shown in Fig. 2. We further report built (buildings and
roads), and natural (greenery and water) environment and demographic
characteristics of the clusters which are shown in Fig. 3. Some clusters
contained a single dominant characteristic with a strong visual representa-
tion. These include tiles with water, dense vegetation, and densely popu-
lated areas, especially those with distinctly visible building orientation
between 36 and 45 degrees with respect to cardinal directions (as defined
and calculated with data listed in Table 1 and shown in Fig. 4). The tiles
that fell in these clusters had distinct distributions throughout the city,
driven both by the regional environment and how the city has developed
over time. The Dark dense vegetation cluster, which captures forest areas,
is mainly located in the periphery of the city although some few patches
were also present in themore urbanised AMA, for example at the University
of Ghana campus. TheWater cluster captures bodies of inland water and is
often surrounded by a cluster consisting of vegetation that is less dense and
lighter in colour (Light vegetation). The two clusters that capture densely
populated areas (Densely populated areas, >36 degree building orientation
and Densely populated areas, <36 degree building orientation) are mostly lo-
cated in the AMA, and in adjacent metropolises, covering over one quarter
of GAMA. Building-related metrics (building count, area, mean size) and
population density were high in both clusters, with their distinguishing fea-
ture being building orientation with respect to cardinal directions, as de-
fined in Table 1 and seen in Fig. 4.

The Light vegetation cluster and Empty land cluster captured natural envi-
ronments that were more heterogeneous than the clusters described above.
Tiles falling into the Light vegetation cluster varied more in their NDVI than
the Dark dense vegetation cluster that solely captured dense vegetation in a
higher NDVI range (~0.3–0.5). Tiles in the Empty land cluster typically
had low population density and were often located next to the vegetation
clusters in the northeast and northwest of the study area. Based on visual
inspection, these were areas of dry soil, such as gravel, unpaved roads or
sandy terrain.

Other clusters weremore complex and containedmulti-dimensional en-
vironmental characteristics rather than any single dominant characteristic.
These include the Buildings surrounded by vegetation and Roads and
sparse-moderately populated areas clusters, which together covered one half
of the GAMA. The Roads and sparse-moderately populated areas cluster was
spread throughout the city, surrounding and moving out radially from the



Fig. 2.Map of image-driven clusters in theGreater AccraMetropolitanArea (GAMA). Thefigure shows 222,420 image tiles each assigned to one of eight clusters. Each cluster
is shown in a different colour – the same colour is used for each cluster in subsequent figures. The boxes show examples of the tiles that were assigned to each cluster. The
numbers next to each cluster name show the percentage of tiles grouped into the cluster.
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densely populated areas in the city centre. The Buildings surrounded by veg-
etation cluster consisted of tiles that include buildings with low average
building size and that were mostly located in the peri-urban areas.

5.2. Cluster variability in the feature space

To understand towhat extent the network learnsmeaningful image rep-
resentations used for clustering, we visualised cluster assignment and the
image tiles for each cluster in the feature space (Fig. 5A) and measured
the intra-cluster and inter-cluster distance (Fig. 5B), as described in
Section 4.2.1. Tiles that fell into Water and Dark dense vegetation clusters
had small intra-cluster distance which indicates they were very homoge-
neous, and those in Densely populated areas, >36 degree building orientation
and Buildings surrounded by vegetation cluster were highly variable
(Fig. 5B); other clusters fell between the two groups in terms of their
intra-cluster similarity versus variability. We also measured the inter-
cluster similarity by calculating the average distance between each pair of
cluster centroids in the feature space. The clusters that captured the natural
environment (Water,Dark dense vegetation, Light vegetation, and Empty Land)
were close to one another in the feature space. The Densely populated areas,
>36 degree building orientation and Densely populated areas, <36 degree build-
ing orientation clusters were furthest apart from the water and vegetation
clusters, and the Buildings surrounded by vegetation and Roads and sparse-
moderately populated areas clusters were intermediate distance to these
groups. The clusters that containedmulti-dimensional environmental char-
acteristics, Buildings surrounded by vegetation and Roads and sparse-
moderately populated areas, were also close to each other in the feature
space.

5.3. Prediction of cluster assignment with external variables

To quantitatively evaluate what features of urban form, environment
and population are most represented in the visually identified clusters, we
trained a machine learning classifier to predict cluster membership using
environmental and demographic variables not used in clustering, as de-
scribed in Section 4.3. Fig. 6 shows the SHAP values, which are a measure
of variable importance for describing cluster assignment. A higher SHAP
6

score indicates larger relevance of a certain variable on predicting cluster
assignment. The SHAP values show that NDVI was an important external
predictor for image-driven cluster membership, especially through its sub-
stantial role for identifying the Water (which had very low NDVI) and
Dark dense vegetation (very high NDVI) clusters. At the same time, other var-
iables helped predict cluster assignment beyond the role played by NDVI.
Specifically, NDVI was followed by mean building area, whosemost salient
role was in predicting Empty land and the two vegetation clusters (which all
had very low building area), and building orientation, whose importance
was driven most by its ability to predict Densely populated areas, >36 degree
building orientation. Tiles belonging to the heterogeneous clusters of Roads
and sparse-moderately populated areas and Buildings surrounded by vegetation
were not predicted by any single environmental variable but rather had
contributions from multiple ones. Distance and length of major roads
were the least relevant variables in predicting cluster memberships, likely
because their role was already captured in the same metrics for all roads.
Population density and mean building size were ranked comparatively
low as well, possibly because the information on building size was already
captured by building area and count, and population density was moder-
ately correlated with building-related metrics (Appendix Fig. A.2). This
happens because the SHAP importance score is partitioned such that corre-
lated featureswill not rank as highly aswhen their impactswere considered
in isolation.

5.4. Sensitivity analyses

5.4.1. Sensitivity to image tile dimensions
We investigated cluster stability with varying tile size, specifically

128 × 128 (i.e. 50% smaller than main analysis in side length),
384×384 (50% larger), and 512×512 (100% larger) pixels, as described
in Section 4.4.1. Analyses with different tile sizes showed that tileswith sin-
gle, dominant characteristics such as vegetation, water, and densely popu-
lated areas, were clustered largely independently of tile size (Appendix
Fig. A.3). The resultant clusters were stable in their (external) characteris-
tics and in terms of areas they cover, supported by the co-occurrence
plots that compare cluster membership between the different tile sizes
(Appendix Fig. A.4). Tiles with multi-dimensional environmental



Fig. 3.Built and natural environment anddemographic characteristics of clusters. The radar charts depict the built and natural environment anddemographic characteristics of each
cluster. Each environmental and demographic variable is scaled with a quantile transformer, a non-parametric transformation tomap the data to a uniform distribution with values
between 0 and 1 (0.5 indicates the median value of a variable across all tiles in the entire image). The colours of each chart correspond to the cluster map in Fig. 2. Tiles with no
buildings were included (as zeros) in summary statistics for building count and building area but excluded from calculation of summary statistics for average building size and
orientation so that zero is not used in the denominator. The length of major roads was zero in 93% of all tiles, hence the median of all tiles was zero as was the mean in most
clusters. NDVI: Normalised Difference Vegetation Index.
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characteristics in the main analysis, such as the Buildings Surrounded by veg-
etation and Roads and sparse-moderately populated areas clusters, varied the
most depending on the tile size and areas of the image they are assigned
to. Smaller tiles (128×128 pixels) capturedmore homogenous landscapes
and less mixed environments than the original and larger tile sizes, such as
Buildings surrounded by vegetation. In contrast, larger tiles (384×384 pixels,
512×512 pixels)weremore likely to capturemixed environments, such as
sparse-moderately populated areas and buildings and roads together with
vegetation. These two clusters make up 49% and 54% of the total tiles for
the analysis with 384 × 384 pixels and 512 × 512 pixels, respectively,
compared to 39% in the 128 × 128 pixel analysis.

5.4.2. Sensitivity to the number of clusters
As part of the sensitivity analysis, described in Section 4.4.1, we

analysed how the clusters changed when we set the cluster number, K,
from K = 2 to K = 12 (Fig. 7). The Sankey plot shows that initially
(K= 2), the tiles were separated into a cluster containing two very homog-
enous natural environments (water and dark dense vegetation) and a clus-
ter that captured all the other tiles. At K = 4, that mixed cluster split into
clusters with distinct visual character including populated areas and
empty land and light vegetation. The natural environment cluster that
formed at K = 2 further split into dark green vegetation and water tiles
at K = 6. At K = 6, the algorithm also grouped densely populated areas
with high building orientation together, a cluster that stays constant until
K = 12. Clusters capturing mixed environments such as roads and
sparse-moderately populated areas and buildings surrounded by vegetation
appeared later at K=8. By K=10 and K=12, very particular clusters ap-
pear, such as a cluster that captures populated areas with very low building
orientation (<10 degrees), a cluster capturing riparian areas, and a cluster
that contained edges of clouds. The results show that clusters that consisted
of a single defining characteristic (e.g., dense vegetation or densely popu-
lated areas) were more robust to the choice of cluster number, whereas
these based on a combination of characteristics (e.g., buildings surrounded
by vegetation) changed more based on the number of clusters. Comparing
the cluster development with the cluster homogeneity in the extracted fea-
ture space (Fig. 5), the clusters that emerge first (dark and light vegetation
and water) were also the clusters which were most internally uniform as
shown by the feature plot (Fig. 5B).

5.4.3. Influence of hyperparameter k on feature learning
To investigate how the hyperparameter k influences deep feature crea-

tion, we compared the cluster results of three sets of deep features (DF) that
were learnt with different choices of hyperparameter k (k ∈ {8, 50, 100}),
namely DFk8, DFk50, andDFk100, as described in Section 4.4.2. The visual in-
terpretation through the radar plots of the three sets of eight clustered deep
features (Appendix Fig. A.5) and the co-occurrence of cluster assignments
(Appendix Fig. A.6) showed that the tiles were mostly grouped in similar
ways for different values of k and had consistent environmental and demo-
graphic characteristics. Each choice of k included aWater, Dark dense vege-
tation, Light Vegetation, and Densely populated areas with >36 degree building
orientation and <36 degree building orientation cluster. The main changes be-
tween cluster results were in the Empty land cluster and clusters with the
mixed environments, the Buildings surrounded by vegetation and the Roads
and sparse-moderately populated areas clusters, which differed in building
area and count, as well as building orientation. The building area and
count of the clusters formed from the DFk50 and DFk100 were slightly higher
than the cluster results from DFk8 for the Roads and sparse-moderately popu-
lated areas cluster, but slightly lower for the Buildings surrounded by vegeta-
tion cluster. This change arose mainly due to the fact that more tiles were
assigned to the Roads and sparse-moderately populated areas and Buildings
surrounded by vegetation clusters than in the main analysis, with 60% of
tiles being assigned to these two clusters in the DFk50 analysis and 69% in
the DFk100 analysis, compared to 50% in the main (DFk8) analysis. The ad-
ditional tiles for the Buildings surrounded by vegetationmainly came from the
Empty land cluster in the main analysis (Appendix Fig. A.6). Furthermore,
the remaining part of the Empty land cluster created with DFk50 and
8

DFk100 also contained some vegetation compared to the clusters formed
in the main (DFk8) analysis.

6. Discussion

Cities are complex dynamic systems whose built and natural environ-
ments, including buildings, roads and vegetation, are shaped through an in-
terplay of local geography and human activity. These environments in turn
affect where people live and conduct their activities, how they commute
among these places, and their impacts on health and wellbeing. Our
analysis showed that application of unsupervised clustering can capture
single- and multi-feature urban environments and hence offer a novel
way of coherently and comprehensively characterising and tracking
urban environmental change, especially in settings where labelled data
are limited.

6.1. Implications for tracking sustainable urban development

Our results show that the image-based clusters present interpretable in-
sights into the urban environment. The proposed framework can be used to
track changes in the built and natural environment at a fine spatial scale
and in near-real-time to inform urban planning and services. The clusters
capturing vegetation and water, which have distinct visual features, are in-
fluenced by regional geography and whether and how it is preserved or
modified. The Dark dense vegetation cluster captures the hills and valleys
in the north of the GAMA, where human activities have so far been rela-
tively minimal. These forests used to cover even larger parts of north and
northwest regions of the GAMA, but land clearing for urban growth and ag-
riculture, charcoal making and firewood collection have substantially re-
duced the extent of trees (Amoah and Korle, 2020; Fisher, 2010). The
Water cluster covers waterways and other water bodies, and is surrounded
by Light vegetation cluster, which lies closer to human settlements than the
Dark dense vegetation cluster. In addition to riverine vegetation, the Light veg-
etation cluster captures a wetland that separates the Accra Metropolitan
Area from the adjacent metropolis of Tema in the east, as well as protected
areas around a reservoir. These areas face threats of urban encroachment,
and their conservation is necessary for preservation of the region's biodiver-
sity and to protect the city from flooding (Addae and Oppelt, 2019; Cities
Alliance, 2016; Frimpong et al., 2021; Tuffour-Mills et al., 2020; Water
Resources Commission, 2013). In particular, large parts of Accra's informal
settlements (which fall in our two densely populated clusters) are located
next to riparian areas and are exposed to a risk of flooding (Amoako and
Frimpong Boamah, 2015; Poku-Boansi et al., 2020), which is predicted to
increase due to global climate change (Cities Alliance, 2016). The Empty
land cluster captures open unvegetated land, such as sandy or bare soil
with a few shrubs or unfinished buildings and unpaved paths. Empty land
that has recently lost vegetation cover may be a setting for imminent road
and building construction and could indicate the beginning of city sprawl
(Wemegah et al., 2020). These changes, and how they change the city's en-
vironment, can be readily monitored with sequential satellite images and
our clustering approach.

The two densely populated areas (Densely populated, >36 and < 36 de-
gree building orientation) are mostly located in the dense core of the city
and adjacent metropolis, a feature that is seen in many cities in Africa
(Soman et al., 2020). These densely populated areas tend to be poorer
than other parts of the city but are well-connected to urban transport and
trade hubs, which makes them a setting for informal and formal business
and trade activities. The dense population and the commercial activities
createmore social cohesion but also make these areas noisier andmore pol-
luted (Alli et al., 2021; Clark et al., 2021; Wang et al., 2022). Despite cur-
rently having no vertical layering, both clusters are dense in terms of
building footprint, as is the case in informal settlements in other cities in
the developing world (The Economist, 2019; Lall et al., 2021). There is a
trend by private and public-private developers towards larger and higher
buildings in these highly accessible locations, which contrasts with earlier
urban sprawl in Accra and other major African cities (Amponsah et al.,



Fig. 4. Difference in building orientation captured by the DeepCluster unsupervised analysis. The figure shows a section of the satellite image that captures the Nima and
Mamobi neighbourhoods in the centre of Accra. The building shapes are plotted on top of the satellite image and are shaded by building orientation from cardinal
directions. The two clusters that capture densely populated areas are shaded in orange and blue. The clusters capture a visible distinction between how the buildings are
arranged within the neighbourhood.
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2022; Lall et al., 2017). Vertical densification can increase economic pro-
ductivity, while also displacing their current residents unless accompanied
with appropriate housing in the same or nearby locations as a part of rede-
velopment. It will also likely change the visual characteristics of these areas
and hence can be measured and monitored through the approach that we
presented. Themain difference between the two densely populated clusters
is the visually distinct building orientation (Fig. 4), which impacts thermal
comfort. This feature which will be increasingly relevant as extreme
weather events, especially high temperatures, become more frequent with
9

changing climate (Abanda and Byers, 2016; Andersson et al., 1985;
Dodoo and Ayarkwa, 2019; Haase and Amato, 2009).

The remaining clusters capture a more complex and heterogeneous mix
of land cover and land use. The areas captured by the Buildings surrounded
by vegetation cluster are either farmland at the fringe of the metropolitan
area or wealthier neighbourhoods with freestanding houses surrounded
by gardens, often as part of gated communities. These areas have lower pol-
lution (Alli et al., 2021; Clark et al., 2021; Wang et al., 2022) and benefit
from proximity to greenspace. The parts of the cluster that are at the fringe



Fig. 5.Cluster assignment and image tiles seen in theCNN-extracted feature space. Fig. 5A shows the 222,420 image tiles plotted on thefirst and second principal components
(PCs) of 4096 features extracted from the second to last fully connected layer of the convolutional neural network; these PCs account for 40% and 17%of the overall variance,
respectively. Each tile is placed at the corresponding value of its features' PC1 and PC2. Each tile is also shown as a point, coloured in the same colours the clustermap in Fig. 2.
This presentation allows visualising image tiles, and their cluster assignment, in relation to extracted intermediate features, and can provide an intuition for how the network
learns image representations in the process of cluster assignment. Fig. 5B shows twomeasures of intra- and inter-cluster similarity. The intra-cluster similarity is calculated as
average distance of tiles to cluster centroid, and, is a measure of within cluster uniformity (smaller distances) versus heterogeneity (larger distances). The distance between
centroids of clusters is a measure of similarity across clusters. The smaller the distance between the clusters, the more similar they are, and vice versa. For computational
efficiency, within- and between-cluster distances were calculated using the first two PCs.
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of the city are expected to grow further into the surrounding natural envi-
ronments (Owusu, 2013), driven by population growth, cheaper housing
stock compared to the city centre, and poorly controlled private land devel-
opment due toweak enforcement of urban planning and development rules
(Addae and Oppelt, 2019; Wellington, 2009). Limiting this sprawl requires
a combination of land tenure reforms, and introduction/enforcement of
urban planning and zoning regulations, so that outward growth and sprawl
are balancedwith (vertical) densification of already-built areas as described
earlier (Addae and Oppelt, 2019; Owusu et al., 2012). Finally, the Roads
and sparse-moderately populated areas cluster represents the combination
of the city's low-medium density residential and commercial settlements
and its road network. Road capacity in GAMA is inadequate for the increas-
ing number of vehicles, and the peri-urban areas are underserved (Adugbila
et al., 2022), as evidenced by the relative underrepresentation of Roads and
sparse-moderately populated areas cluster in the peri-urban areas, especially
in the northeast of GAMA. The combination of this cluster, the two densely
populated clusters and the Buildings surrounded by vegetation cluster, cap-
tures most of the paved and unpaved roads, and provides a good represen-
tation of the connectivity and accessibility of the city. The arrangement of
10
these clusters can help to identify areas that are poorly connected, and re-
veal options for improving their connectivity including walkable and
bikeable areas, those that can be connected to central Accra with radial
rapid rail or bus transport systems, and those that may require additional
roads (Armah et al., 2010; Musah et al., 2020).

6.2. Application and extension to other cities and multiple time points

The unsupervised approach can be applied to other cities to reveal sim-
ilarities and differences in the character of natural and built environments.
Similarly, the framework can be used for longitudinal analysis of satellite
images taken at different points in time in order to track urban change
based on how each phenotype expands or replaces others.

Themain consideration for application to another single city is the num-
ber of clusters, which should be adapted to the local environmental context
aswell as application. A lower number of clusters (K) can aid in distinguish-
ing the built and natural environment, and higher number of clusters can
highlight more specialised phenotypes that capture mixed environments.
Further methodological considerations are needed for extensions to



Fig. 6. Built and natural environment and demographic variables as predictors of membership in image-based clusters. The figure shows SHapley Additive exPlanations
(SHAP) (Lundberg and Lee, 2017), obtained by fitting XGBoost (Chen and Guestrin, 2016) classifier to predict cluster membership by environmental and demographic
variables. The SHAP value for each variable indicates its predictive power for assignment to various clusters, and hence identify the measures of urban form (buildings
and roads), environment (water and vegetation), and population that differentiate clusters that were generated based on images alone. The mean SHAP values from the
XGBoost classifier were calculated for each environmental and demographic variable as described in Methods. The total length of each bar, which is the mean absolute
SHAP value, represents the overall importance of each variable for predicting cluster membership, and the different colours represent the importance for assignment to
each cluster.
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multiple cities and time points. First, researchers must consider whether to
cluster cities together or separately. Separate clustering will allow place-
specific clusters to arise. However, clusters of different cities are not directly
comparable. In contrast, joint clustering will create comparable clusters but
Fig. 7. Impact of cluster number on the clustering outcome. The Sankey plot shows the siz
how clusters partition and merge based on repeating the main analysis with varying K
analysis, and based on the environmental and demographic characteristics of each clust
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may not pick a feature of built or natural environment that is unique to a
specific city. Similarly, the choice of number of clusters needs to balance
the comprehensiveness of clusters and their interpretability, especially
when cities are clustered jointly.
es of clusterswhen cluster number (K) varied from2 to 12. Theflowof data indicates
. The naming of the clusters for each K is based on a similar process as in the main
er.
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6.3. Strength and limitations

We presented a novel approach for using high-resolution satellite imag-
ery without external data to capture variations inmultiple natural and built
environment of cities and can provide timely data to support sustainable
and healthy urban development. The approach coherently integrates differ-
ent features of the urban environment, which have traditionally been
analysed in isolation. The algorithm combines feature extraction and clus-
tering in one model, making its implementation easy and efficient. We
used very high-resolution satellite imagery, which shows objects as small
as cars and trees, and therefore allows the model to use information on
high level features of the urban environment. The results were interpreted
against built and natural environment and demographic characteristics that
demonstrate the interpretability of the model to help its wider use. We also
investigated the image representations in the feature space to better under-
stand the cluster formation and assessed the sensitivity of the approach to
key choices such as tile size and cluster number. The approach used here
picks up more detailed clusters than pixel-level analysis (e.g., land classifi-
cation by NDVI) could do. For example, the two densely populated areas
clusters had very similar median NDVI but differed in building orientation
and average building size. Similarly, the Buildings surrounded by vegetation
and the Empty land clusters had similar median NDVI but visually look
very different. The former contains a mix of built environments and natural
environments, whereas the latter did not have any built structures and had
little or no vegetation. The SHAP analysis (Fig. 6) supported this observa-
tion and showed that factors beyond NDVI help with separation of image-
based clusters.

The main limitations of the analysis are related to the geographic and
temporal data availability. A direction of further research should therefore
either analyse additional points in time or additional cities. We used one
satellite image that captured the city at a specific point in time, although
weather and season could have an impact on pixel intensities. While the
data on built and natural environment and demographic characteristics
were obtained in the same year, there could be a mismatch between the
exact date the satellite image was taken and these datawere gathered or es-
timated. Additionally, the analysis was limited by the datasets used to inter-
pret the clusters. Further data on the built and natural environment, such as
on building height or agricultural land, might have improved the cluster in-
terpretation. Finally, the CNN-based tile-level approach is computation-
ally more costly than a simpler pixel-level analysis. However, as stated
above, our framework is able to capture more detailed information be-
yond what is captured by one pixel. As computing power increases
and becomes available at low cost, analysis will be become faster and
more accessible.

7. Conclusions

Cities create opportunities to reduce poverty, improve health and
wellbeing, and enhance local and global sustainability (Ezzati et al., 2018;
Kammen and Sunter, 2016; Ramaswami et al., 2016; Ravallion et al.,
2007). To develop and refine policies that leverage the potential of
expanding cities in Africa for sustainable development, it is essential to
track the extent and characteristics of urban growth and change at different
scales, which is currently hindered by the quantity and fragmented nature
of available data. Our work shows that unlabelled satellite images together
with unsupervised deep learning have the potential to bridge the data gaps
that exist on temporal and spatial scales and provide a scalable approach for
tracking urban development throughout the developing world. This ap-
proach will become increasingly cost-effective and efficient as satellite im-
ages become more accessible and affordable, and computing power
increases. It can be automated to track cluster changes between different
time points at near real-time speed in different cities. In doing so, our ap-
proach can help bridge the data gap between the developing and
industrialised nations, and provide a more equitable deep learning ap-
proach that does not rely on labelled image data that are largely gathered
in the industrialised world (Blumenstock, 2018).
12
Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2023.164794.

CRediT authorship contribution statement

A. BarbaraMetzler:Conceptualization, Data curation, Formal analysis,
Software, Visualization, Writing – original draft. Ricky Nathvani: Concep-
tualization, Writing – review& editing. Viktoriia Sharmanska: Conceptu-
alization, Supervision. Wenjia Bai: Conceptualization, Supervision. Emily
Muller:Conceptualization. SimonMoulds: Investigation,Writing – review
& editing. Charles Agyei-Asabere: Investigation, Writing – review &
editing. Dina Adjei-Boadi: Investigation, Writing – review & editing.
Elvis Kyere-Gyeabour: Investigation, Writing – review & editing. Jacob
Doku Tetteh: Investigation, Writing – review & editing. George Owusu:
Investigation, Writing – review& editing. Samuel Agyei-Mensah: Investi-
gation, Writing – review & editing. Jill Baumgartner: Investigation, Writ-
ing – review& editing. Brian E. Robinson: Investigation, Writing – review
& editing. Raphael E. Arku: Investigation, Writing – review & editing.
Majid Ezzati: Conceptualization, Funding acquisition, Resources, Supervi-
sion, Writing – original draft.

Data availability

All data used for the analysis are openly available and data sources
are listed in the data table (Table 1). Code is available on the Pathways
to Equitable Healthy Cities research collaboration website (https://
equitablehealthycities.org/data-download/). The DeepCluster algorithm,
which was published by Facebook research and is also openly available,
was run on 3 RTX6000 GPUs, 72GB memory and a runtime of approxi-
mately 24 h.

Declaration of competing interest

The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the
work reported in this paper.

Acknowledgements

Funding

This work was supported by the Pathways to Equitable Healthy Cities
grant from the Wellcome Trust (209376/Z/17/Z). Antje Barbara Metzler
is supported by an Imperial College President's PhD scholarship. For the
purpose of Open Access, the author has applied a CC BY public copyright
licence to any Author Accepted Manuscript version arising from this sub-
mission.

References

Abanda, F.H., Byers, L., 2016. An investigation of the impact of building orientation on energy
consumption in a domestic building using emerging BIM (building information model-
ling). Energy 97, 517–527.

Abascal, A., et al., 2022. Identifying degrees of deprivation from space using deep learning
and morphological spatial analysis of deprived urban areas. Comput. Environ. Urban.
Syst. 95, 101820.

Addae, B., Oppelt, N., 2019. Land-use/land-cover change analysis and urban growth model-
ling in the Greater Accra Metropolitan Area (GAMA), Ghana. Urban Sci. 3, 26.

Adugbila, E.J., Martinez, J.A., Pfeffer, K., 2022. Road infrastructure expansion and
socio-spatial fragmentation in the peri-urban zone in Accra, Ghana. Cities 133,
104154.

Akubia, J.E., Ahmed, A., Bruns, A., 2020. Assessing how land-cover change associated with
urbanisation affects ecological sustainability in the Greater Accra Metropolitan Area,
Ghana. Land 9, 182.

Alemohammad, H., Booth, K., 2020. LandCoverNet: A Global Benchmark Land Cover Classi-
fication Training Dataset. Preprint at: arXiv.2012.03111.

Alli, A.S., et al., 2021. Spatial-temporal patterns of ambient fine particulate matter (PM2.5)
and black carbon (BC) pollution in Accra. Environ. Res. Lett. 16, 074013.

Amoah, A., Korle, K., 2020. Forest depletion in Ghana: the empirical evidence and associated
driver intensities. For. Econ. Rev. 2, 61–80.

https://doi.org/10.1016/j.scitotenv.2023.164794
https://doi.org/10.1016/j.scitotenv.2023.164794
https://equitablehealthycities.org/data-download/
https://equitablehealthycities.org/data-download/
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0005
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0005
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0005
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0010
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0010
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0010
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0015
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0015
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0020
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0020
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0020
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0025
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0025
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0025
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0030
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0030
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0035
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0035
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0040
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0040


A.B. Metzler et al. Science of the Total Environment 893 (2023) 164794
Amoako, C., Frimpong Boamah, E., 2015. The three-dimensional causes of flooding in Accra,
Ghana. Int. J. Urban Sustain. Dev. 7, 109–129.

Amponsah, O., et al., 2022. Global urban sprawl containment strategies and their implications
for rapidly urbanising cities in Ghana. Land Use Policy 114, 105979.

Andersson, B., Place, W., Kammerud, R., Scofield, M.P., 1985. The impact of building orienta-
tion on residential heating and cooling. Energy Build. 8, 205–224.

Angel, S., et al., 2016. Atlas of urban expansion. Areas and Densities, 2016 edition vol. 1.
Choice Rev., pp. 50–1227.

Annim, S.K., Mariwah, S., Sebu, J., 2012. Spatial inequality and household poverty in Ghana.
Econ. Syst. 36, 487–505.

Armah, F.A., Yawson, D.O., Pappoe, A.A.N.M., 2010. A systems dynamics approach to explore
traffic congestion and air pollution link in the city of Accra, Ghana. Sustainability 2,
252–265.

Arroyo-Arroyo, F., 2021. Connecting the Dots: People, Jobs, and Social Services in Urban
Ghana. World Bank.

Ashley, E.A., 2016. Towards precision medicine. Nat. Rev. Genet. 17, 507–522.
Bergstra, J., Yamins, D., Cox, D., 2013. Making a science of model search: hyperparameter op-

timization in hundreds of dimensions for vision architectures. International Conference
on Machine Learning. PMLR, pp. 115–123.

Blumenstock, J., 2018. Don’t forget people in the use of big data for development. Nature 561,
170–172.

Boeing, G., et al., 2022. Using open data and open-source software to develop spatial indica-
tors of urban design and transport features for achieving healthy and sustainable cities.
Lancet Glob. Health 10, e907–e918.

Boguszewski, A., et al., 2021. LandCover.ai: Dataset for automatic mapping of buildings,
woodlands, water and roads from aerial imagery. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 1102-1110..

Borra, S., Thanki, R., Dey, N., 2019. Satellite image clustering. Satellite Image Analysis: Clus-
tering and Classification. Springer, pp. 31–52.

Brewer, E., Lin, J., Kemper, P., Hennin, J., Runfola, D., 2021. Predicting road quality using
high resolution satellite imagery: a transfer learning approach. PLoS One 16, e0253370.

Burke, M., Driscoll, A., Lobell, D.B., Ermon, S., 2021. Using satellite imagery to understand
and promote sustainable development. Science 371, eabe8628.

Cadamuro, G., Muhebwa, A., Taneja, J., 2018. Assigning a Grade: Accurate Measurement of
Road Quality Using Satellite Imagery. Preprint at https://doi.org/10.48550/arXiv.1812.
01699.

Caron, M., Bojanowski, P., Joulin, A., Douze, M., 2018. Deep clustering for unsupervised
learning of visual features. In Proceedings of the European conference on computer vision
(ECCV), 132-149.

Chen, T., Guestrin, C., 2016. XGBoost: a scalable tree boosting system. Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
Association for Computing Machinery, pp. 785–794.

Cities Alliance, 2016. Future Cities Africa. https://www.arup.com/perspectives/
publications/research/section/future-cities-africa.

Clark, S.N., et al., 2021. Space-time characterization of community noise and sound sources in
Accra, Ghana. Sci. Rep. 11, 1–14.

Das, P., Chand, S., 2021. Extracting road maps from high-resolution satellite imagery using re-
fined DSE-LinkNet. Connect. Sci. 33, 278–295.

Dhodhi, M.K., Saghri, J.A., Ahmad, I., Ul-Mustafa, R., 1999. D-ISODATA: a distributed algo-
rithm for unsupervised classification of remotely sensed data on network of workstations.
J. Parallel Distrib. Comput. 59, 280–301.

Dodoo, A., Ayarkwa, J., 2019. Effects of climate change for thermal comfort and energy per-
formance of residential buildings in a sub-Saharan African climate. Buildings 9, 215.

Donahue, J., et al., 2014. Decaf: A Deep Convolutional Activation Feature for Generic Visual
Recognition. International Conference on Machine Learning. PMLR.

Esch, T., et al., 2010. Urban remote sensing - how can earth observation support the sustain-
able development of urban environments? Real CORP 1–11.

Ezzati, M., et al., 2018. Cities for global health. BMJ 363, k3794.
Fabel, Y., et al., 2021. Applying self-supervised learning for semantic cloud segmentation of

all-sky images. Atmos. Meas. Tech. Discuss. 2021, 1–20.
Fisher, B., 2010. African exception to drivers of deforestation. Nat. Geosci. 3, 375–376.
Fleischmann, M., 2019. MOMEPY: urban morphology measuring toolkit. J. Open Source

Softw. 4 (43), 1807.
Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. Ann.

Stat. 1189–1232.
Frimpong, J., et al., 2021. A review of the design and implementation of Ghana’s National

Water Policy (2007). Water Policy 23, 1170–1188.
Ghana Statistical Service, 2019. Central Data Catalog. statsghana.gov.gh. http://www2.

statsghana.gov.gh/nada/index.php/catalog.
Haase, M., Amato, A., 2009. An investigation of the potential for natural ventilation and build-

ing orientation to achieve thermal comfort in warm and humid climates. Sol. Energy 83,
389–399.

Han, K.-S., Champeaux, J.-L., Roujean, J.-L., 2004. A land cover classification product over France
at 1 km resolution using SPOT4/VEGETATION data. Remote Sens. Environ. 92, 52–66.

Hu, F., Xia, G.-S., Hu, J., Zhang, L., 2015. Transferring deep convolutional neural networks for
the scene classification of high-resolution remote sensing imagery. Remote Sens. 7,
14680–14707.

Huang, B., Zhao, B., Song, Y., 2018. Urban land-use mapping using a deep convolutional neu-
ral network with high spatial resolution multispectral remote sensing imagery. Remote
Sens. Environ. 214, 73–86.

Huang, C., et al., 2021. Mapping the maximum extents of urban green spaces in 1039 cities
using dense satellite images. Environ. Res. Lett. 16, 064072.

Ibrahim, M.R., Haworth, J., Cheng, T., 2020. Understanding cities with machine eyes: a re-
view of deep computer vision in urban analytics. Cities 96, 102481.

Kammen, D.M., Sunter, D.A., 2016. City-integrated renewable energy for urban sustainability.
Science 352, 922–928.
13
Karra, K., et al., 2021. Global land use/land cover with Sentinel 2 and deep learning. 2021
IEEE International Geoscience and Remote Sensing Symposium IGARSS. IEEE,
pp. 4704–4707.

Keirstead, J., Leach, M., 2008. Bridging the gaps between theory and practice: a service niche
approach to urban sustainability indicators. Sustain. Dev. 16, 329–340.

Lall, S., Lebrand, M., Park, H., Sturm, D., Venables, A., 2021. Pancakes to Pyramids. World
Bank.

Lall, S.V., Henderson, J.V., Venables, A.J., 2017. Africa’s Cities: Opening Doors to the World.
World Bank.

Li, M., Zang, S., Zhang, B., Li, S., Wu, C., 2014. A review of remote sensing image classification
techniques: the role of spatio-contextual information. Eur. J. Remote Sens. 47, 389–411.

Li, Y., Zhang, H., Xue, X., Jiang, Y., Shen, Q., 2018. Deep learning for remote sensing image
classification: a survey. WIREs Data Min. Knowl. Discov. 8, e1264.

Lillesand, T., Kiefer, R.W., Chipman, J., 2015. Remote Sensing and Image Interpretation. John
Wiley & Sons.

Lim, Young Won, Lee, Sang Uk, 1990. On the color image segmentation algorithm based on
the thresholding and the fuzzy c-means techniques. Pattern Recogn. 23, 935–952.

Liu, X., de Sherbinin, A., Zhan, Y., 2019. Mapping urban extent at large spatial scales using
machine learning methods with VIIRS nighttime light and MODIS daytime NDVI data.
Remote Sens. 11, 1247.

Lundberg, S.M., Lee, S.I., 2017. A unified approach to interpreting model predictions. Ad-
vances in Neural Information Processing Systems, 30.

Ma, L., et al., 2019. Deep learning in remote sensing applications: a meta-analysis and review.
ISPRS J. Photogramm. Remote Sens. 152, 166–177.

Mathieu, R., Freeman, C., Aryal, J., 2007. Mapping private gardens in urban areas using
object-oriented techniques and very high-resolution satellite imagery. Landsc. Urban
Plan. 81, 179–192.

Maxar Technologies. 2020. COVID-19 Open data program. https://www.maxar.com/open-
data/covid19.

Musah, B.I., Peng, L., Xu, Y., 2020. Urban congestion and pollution: A quest for cogent solu-
tions for Accra City. IOP Conference Series: Earth and Environmental Science. vol. 435.
IOP Publishing, p. 012026.

Oquab, M., Bottou, L., Laptev, I., Sivic, J., 2014. Learning and transferring mid-level image
representations using convolutional neural networks. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1717–1724.

Owusu, G., 2013. Coping with urban sprawl: a critical discussion of the urban containment
strategy in a developing country city, Accra. Planum J. Urbanism 26, 1–17.

Owusu, G., Agyei-Mensah, S., Lund, R., 2008. Slums of hope and slums of despair: mobil-
ity and livelihoods in Nima, Accra. Nor. Geogr. Tidsskr. - Nor. J. Geogr. 62,
180–190.

Owusu, G., Oteng-Ababio, M., Afutu-Kotey, R.L., 2012. Conflicts and governance of landfills
in a developing country city, Accra. Landsc. Urban Plan. 104, 105–113.

Poku-Boansi, M., Amoako, C., Owusu-Ansah, J.K., Cobbinah, P.B., 2020. What the state does
but fails: exploring smart options for urban flood risk management in informal Accra,
Ghana. City Environ. Interact. 5, 100038.

Ramaswami, A., Russell, A.G., Culligan, P.J., Sharma, K.R., Kumar, E., 2016. Meta-principles
for developing smart, sustainable, and healthy cities. Science 352, 940–943.

Ravallion, M., Chen, S., Sangraula, P., 2007. New evidence on the urbanization of global pov-
erty. Popul. Dev. Rev. 33, 667–701.

Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for large-scale image
recognition. International Conference on Learning Representations.

Soman, S., Beukes, A., Nederhood, C., Marchio, N., Bettencourt, L.M., 2020. Worldwide detec-
tion of informal settlements via topological analysis of crowdsourced digital maps. ISPRS
Int. J. Geo-Inf. 9, 685.

Songsore, J., McGranahan, G., 1998. The political economy of household environmental man-
agement: gender, environment and epidemiology in the Greater Accra Metropolitan Area.
World Dev. 26, 395–412.

Tayara, H., Gil Soo, K., Chong, K.T., 2018. Vehicle detection and counting in high-
resolution aerial images using convolutional regression neural network. IEEE Access
6, 2220–2230.

The Economist, 2019. Modern cities become less dense as they grow. https://www.economist.
com/graphic-detail/2019/10/05/modern-cities-become-less-dense-as-they-grow.

Tiecke, T.G., et al., 2017. Mapping the World Population One Building at a Time. World
Bank.

Tuffour-Mills, D., Antwi-Agyei, P., Addo-Fordjour, P., 2020. Trends and drivers of land cover
changes in a tropical urban forest in Ghana. Trees For. People 2, 100040.

United Nations, 2019. World Urbanization Prospects: The 2018 Revision. United Nations, De-
partment of Economic and Social Affairs, Population Division.

Wang, J., Biljecki, F., 2022. Unsupervised machine learning in urban studies: a systematic re-
view of applications. Cities 129, 103925.

Varade, D.M., Maurya, A.K., Dikshit, O., 2019. Development of spectral indexes in
hyperspectral imagery for land cover assessment. IETE Tech. Rev. 36, 475–483.

Wang, J., et al., 2022. Nitrogen oxides (NO and NO2) pollution in the Accra metropolis: spa-
tiotemporal patterns and the role of meteorology. Sci. Total Environ. 803, 149931.

Water Resources Commission, 2013. Riparian Buffer Zone Policy. https://www.wrc-gh.org/
documents/acts-and-regulations/.

Weeks, J.R., Hill, A.G., Stow, D.A., Getis, A., Fugate, D., 2007. Can we spot a neighbor-
hood from the air? Defining neighborhood structure in Accra, Ghana. GeoJournal
69, 9–22.

Wellington, H., 2009. In gated cages, glazed boxes and dashed housing hopes–in remem-
brance of the dicey future of Ghanaian housing. Proceedings of the 2009 National Hous-
ing Conference, Accra, Ghana. 7–8.

Wemegah, C.S., Yamba, E.I., Aryee, J.N.A., Sam, F., Amekudzi, L.K., 2020. Assessment of
urban heat island warming in the Greater Accra region. Sci. Afr. 8, e00426.

Wilson, E.O., 1985. The biological diversity crisis: a challenge to science. Issues Sci. Technol.
2, 20–29.

http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0045
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0045
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0050
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0050
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0055
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0055
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0060
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0060
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0065
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0065
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0070
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0070
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0070
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0075
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0075
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0080
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0085
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0085
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0085
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0090
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0090
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0095
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0095
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0095
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0100
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0100
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0100
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0105
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0105
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0110
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0110
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0115
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0115
https://doi.org/10.48550/arXiv.1812.01699
https://doi.org/10.48550/arXiv.1812.01699
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0130
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0130
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0130
https://www.arup.com/perspectives/publications/research/section/future-cities-africa
https://www.arup.com/perspectives/publications/research/section/future-cities-africa
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0140
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0140
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0145
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0145
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0155
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0155
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0155
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0160
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0160
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0165
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0165
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0170
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0170
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0175
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0180
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0180
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0185
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0190
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0190
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0195
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0195
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0200
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0200
http://www2.statsghana.gov.gh/nada/index.php/catalog
http://www2.statsghana.gov.gh/nada/index.php/catalog
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0215
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0215
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0215
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0225
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0225
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0230
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0230
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0230
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0235
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0235
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0235
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0240
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0240
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0245
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0245
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0250
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0250
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0255
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0255
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0255
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0260
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0260
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0265
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0265
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0270
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0270
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0275
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0275
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0280
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0280
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0285
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0285
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0290
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0290
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0295
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0295
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0295
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0300
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0300
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0305
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0305
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0310
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0310
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0310
https://www.maxar.com/open-data/covid19
https://www.maxar.com/open-data/covid19
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0320
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0320
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0320
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0325
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0325
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0325
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0330
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0330
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0335
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0335
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0335
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0340
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0340
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0345
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0345
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0345
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0350
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0350
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0355
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0355
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0360
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0360
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0210
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0210
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0210
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0365
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0365
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0365
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0370
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0370
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0370
https://www.economist.com/graphic-detail/2019/10/05/modern-cities-become-less-dense-as-they-grow
https://www.economist.com/graphic-detail/2019/10/05/modern-cities-become-less-dense-as-they-grow
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0375
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0375
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0380
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0380
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0385
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0385
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0395
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0395
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0390
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0390
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0400
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0400
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0400
https://www.wrc-gh.org/documents/acts-and-regulations/
https://www.wrc-gh.org/documents/acts-and-regulations/
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0410
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0410
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0410
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0415
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0415
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0415
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0420
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0420
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0425
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0425


A.B. Metzler et al. Science of the Total Environment 893 (2023) 164794
Wu, A.N., Biljecki, F., 2021. Roofpedia: automatic mapping of green and solar roofs for an
open roofscape registry and evaluation of urban sustainability. Landsc. Urban Plan.
214, 104167.

Xie, J., Girshick, R., Farhadi, A., 2016. Unsupervised deep embedding for clustering analysis.
Proceedings of The 33rd International Conference on Machine Learning. PMLR,
pp. 478–487.

Yosinski, J., Clune, J., Bengio, Y., Lipson, H., 2014. How transferable are features in deep neu-
ral networks? Adv. Neural Inf. Proces. Syst. 27.
14
Zhou, Z., et al., 2011. Household and community poverty, biomass use, and air pollution in
Accra, Ghana. Proc. Natl. Acad. Sci. 108, 11028–11033.

Zhu, Z., et al., 2019. Understanding an urbanizing planet: strategic directions for remote sens-
ing. Remote Sens. Environ. 228, 164–182.

Zou, Q., Ni, L., Zhang, T., Wang, Q., 2015. Deep learning based feature selection for remote
sensing scene classification. IEEE Geosci. Remote Sens. Lett. 12, 2321–2325.

http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0430
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0430
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0430
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0435
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0435
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0435
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0440
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0440
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0445
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0445
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0450
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0450
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0455
http://refhub.elsevier.com/S0048-9697(23)03417-4/rf0455

	Phenotyping urban built and natural environments with high-�resolution satellite images and unsupervised deep learning
	1. Introduction
	2. Data, methodological context and contributions
	3. Study area
	4. Data and methods
	4.1. Data
	4.1.1. Satellite image
	4.1.2. Built environment, water, vegetation, and population

	4.2. DeepCluster: combined feature extraction and clustering
	4.2.1. Visualising the clusters in the feature space

	4.3. Built and natural environment and demographic characteristics and predictors of clusters
	4.4. Sensitivity analysis
	4.4.1. Sensitivity to scale and number of clusters
	4.4.2. Influence of hyperparameter k on feature learning


	5. Results
	5.1. Clusters of the urban environment
	5.2. Cluster variability in the feature space
	5.3. Prediction of cluster assignment with external variables
	5.4. Sensitivity analyses
	5.4.1. Sensitivity to image tile dimensions
	5.4.2. Sensitivity to the number of clusters
	5.4.3. Influence of hyperparameter k on feature learning


	6. Discussion
	6.1. Implications for tracking sustainable urban development
	6.2. Application and extension to other cities and multiple time points
	6.3. Strength and limitations

	7. Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	section29
	Acknowledgements
	Funding

	References




